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Abstract— The limitations of traditional databases, in partic-
ular the relational model, to cover the requirements of current
applications has lead the development of new database technolo-
gies. Among them, the Graph Databases are calling the attention
of the database community because in trendy projects where a
database is needed, the extraction of worthy information relies
on processing the graph-like structure of the data. In this paper
we present a systematic comparison of current graph database
models. Our review includes general features (for data storing
and querying), data modeling features (i.e., data structures,
query languages, and integrity constraints), and the support for
essential graph queries.

I. INTRODUCTION

The limitations of traditional databases, in particular the
relational model, to cover the requirements of current applica-
tion domains, has lead the development of new technologies
called NOSQL databases [1]. According to its data model,
these databases can be categorized as: Wide-column stores,
which follow the BigTable model of Google (e.g., Cassandra);
Document stores, which are oriented to store semi-structured
data (e.g., MongoDB); Key-value stores, which implement a
key to value persistent map for data indexing and retrieval
(e.g. BerkeleyDB); and Graph Databases, which are oriented
to store graph-like data.

Activity around graph databases flourished in the first half
of the nineties and then the topic almost disappeared [2]. Re-
cently the area is gaining attention because in trendy projects
where a database is needed (for example chemistry [3], biology
[4], Web Mining [5] and semantic Web [6]), the importance
of the information relies on the relations more or equal than
on the entities (a basic principle of every graph database).
Moreover, the continued emergence and increase of massive
and complex graph-like data makes a graph database a crucial
requirement. This renascence is showed by the availability of
several graph databases systems.

One of the most important elements conforming a database
is its database model (or simply data model). In the most
general sense a data model is a collection of conceptual tools
used to model representations of real-world entities and the
relations among these entities [7]. From a database point of
view, a data model consists of three components: a set of data
structure types, a set of operators or inference rules, and a set
of integrity rules [8].

Graph database models can be characterized as those where
data structures for the schema and instances are modeled as
graphs or generalizations of them, and data manipulation is ex-
pressed by graph-oriented operations and type constructors [2].

The benefits of using a graph data model are given by: the
introduction of a level of abstraction which allows a more
natural modeling of graph data; query languages and operators
for querying directly the graph structure; and ad-hoc structures
and algorithms for storing and querying graphs.

Motivation. In order to choose the most suitable graph
database, to be used in some application domain, we need
to known its features, advantages and disadvantages. In par-
ticular, the data model implemented by a database play an
important role in its selection because this ensure (in advance)
an innate support for storing and querying the data for a
desired application domain.

Related Work. Concerning the origins of graph databases,
Angles and Gutierrez [2] developed a survey on graph database
models proposed before the year 2002. The authors synthe-
sized the notion of a “graph database model” and compare the
proposals available at the moment. It is important to emphasize
that most of the works reviewed by the authors followed a
theoretical interest more than practical developments. Hence,
a practical evaluation of the models is not available.

With respect to the recent developments in the area. Pere
Burton [9] reviewed six graph databases (Neo4j, Hyper-
GraphDB, DEX, InfoGrid, Sones and VertexDB) and pub-
lished a comparison-matrix that included information like
software features (e.g., license), schema features (e.g., types
of nodes and edges), query features (e.g., language and traver-
sals), general database features (e.g., transactions, indexing),
database operation utilities (e.g., protocols), language bindings
and operating systems. This work summarizes the features
but does not include major discussion nor analysis. Another
informal review [10] included an interesting questionnaire
about desirable features for graph databases. Domingues-Sal
et al.[11] evaluated the performance of three graph databases
(Neo4j, HypergraphDB and DEX) and an RDF Database
(Jena). The tests, that included the evaluation of several typical
graph operations over different graph sizes, shown that DEX
and Neo4j were the most efficient implementations.

In summary, a systematic analysis and comparison of the
current graph data models is, to the best of our knowledge,
not available.

Objective and Contribution. In this paper we compare
current graph databases concentrating on their data model
features, that is data structures, query facilities, and integrity
constraints. We restrict our study to the logical level and avoid
physical and implementation considerations. Additionally, and



considering that graph databases are oriented to store and
query graph data, we evaluate graph databases in terms of
their support for querying a set of essential graph queries.

The paper is organized as follows: In Section II, we sur-
veyed current graph databases. Section III, presents the com-
parison of graph database models. The support for essential
graph queries is discussed in Section IV. Finally, in Section
V we draw some conclusions and future work.

II. CURRENT GRAPH DATABASES

In the last time there have been an increasing work on graph
databases. Next we present a list of current implementations,
including a short description of each of them. Considering
their level of maturity, in terms of the facilities provided by
a database management system, we consider two types of
developments: graph databases and graph stores. Additionally,
we review several developments related to graph databases.
Graph Databases. We assume that a graph database must
provide most of the major components in database manage-
ment systems, being them: external interfaces (user interface
or API), database languages (for data definition, manipulation
and querying), query optimizer, database engine (middle-level
model), storage engine (low-level model), transaction engine,
management and operation features (tuning, backup, recovery,
etc.). Among the developments satisfying the above condition,
we found AllegroGraph, DEX, HypergraphDB, InfiniteGraph,
Neo4J and Sones.

AllegroGraph[12] is one of the precursors in the current
generation of graph databases. Although it was born as a
graph database, its current development is oriented to meet
the Semantic Web standards (i.e., RDF/S, SPARQL and
OWL). Additionally, AllegroGraph provides special features
for GeoTemporal Reasoning and Social Network Analysis.

DEX[13], [14] provides a Java library for management of
persistent and temporary graphs. Its implementation, based on
bitmaps and other secondary structures, is oriented to ensure
a good performance in the management of very large graphs.

HyperGraphDB [15], [16] is a database that implements the
hypergraph data model where the notion of edge is extended
to connect more than two nodes. This model allows a natural
representation of higher-order relations, and is particularly use-
ful for modeling data of areas like knowledge representation,
artificial intelligence and bio-informatics.

InfiniteGraph [17] is a database oriented to support large-
scale graphs in a distributed environment. It aims the efficient
traversal of relations across massive and distributed data
stores. Its focus of attention is to extend business, social and
government intelligence with graph analysis.

Neo4j [18] is based on a network oriented model where
relations are first class objects. It implements an object-
oriented API, a native disk-based storage manager for graphs,
and a framework for graph traversals.

Sones [19] is a graph database which provides an inherent
support for high-level data abstraction concepts for graphs
(e.g., walks). It defines its own graph query language and a
underlying distributed file system.

Graph Stores. This category grouped implementations pro-
viding basic facilities for storing and querying graphs. Among
them, Filament [20] is a project for a graph storage library
with default support for SQL through JDB; G-Store [21]
is a basic storage manager for large vertex-labeled graphs;
redis graph [22] provides a basic Python implementation for
storing graphs; and VertexDB [23] implements a graph store
on top of TokyoCabinet (a B-tree key/value disk store). Ad-
ditionally, we can mention CloudGraph [24], Horton [25] and
Trinity [26] as prototypes of graph databases.
Technologies related to graph databases. Graph databases
are oriented to store any type of graph, hence they are distinct
from specialized data management tools that use graph notions
in their implementation. Among them we can mention: Web-
oriented databases, which use graph structures for modeling
data used in Web-oriented applications (e.g., InfoGrid and
FlockDB); Document-oriented databases, which implement
graph algorithms in order to traverse the relations between
documents (e.g., OrientDB [27]); and Triple Stores (also called
RDF databases), which are oriented to store RDF graphs
consisting in statements of the form subject-predicate-object
(e.g., 4Store, Virtuoso and Bigdata). Giraph [28] is a graph
processing infrastructure that runs on Hadoop (see Pregel);
AnGrapa [29] is an large-scale graph data management frame-
work for analytical processing; GoldenOrb [30] is a cloud-
based open source project for massive-scale graph analysis;
Phoebus [31] is an implementation of Google’s Pregel for
distributed processing of very large graphs.

Additionally, we can found several in-memory graph tools
characterized by their restriction to work with small graphs.
For example, we can mention complex analysis tools (e.g.,
Cytoscape), and graph visualization tools (e.g., JUNG, IGraph,
GraphViz, Gephi and NodeXL).

III. COMPARISON OF GRAPH DATABASE MODELS

A comparison among databases is typically done by either
using a set of common features or by defining a general model
used as a comparison basis. The evaluation presented in this
section is oriented to evaluate the data model provided by each
graph database, in terms of data structures, query language and
integrity constraints.

As an initial approach we consider some general features for
data storing, operation and manipulation (see Table I). From
the point of view of data storing, we review the support for
three storing schemas (i.e., main memory, external memory,
and back-end storage) and the implementation of indexes. It is
important to emphasize that managing a huge amount of data
is a important requirement in real-life applications for graph
databases. Hence the support for external memory storage is
a main requirement. Additionally, indexes are the basis to
improve data retrieval operations.

From the point of view of data operation and manipulation,
we evaluate whether a graph database implements database
languages, application programming interfaces (API) and
graphical user interfaces (GUI). We consider three database
languages: the Data Definition Language, which allows to



modify the schema of the database by adding, changing, or
deleting its objects; the Data Manipulation Language, which
allows to insert, delete and update data in the database; and
the Query Language, which allows to retrieve data by using
a query expression. Data operation and manipulation features
are summarized in Table II.

In comparison with the traditional approach in databases,
where high-level languages for data operation and manipu-
lation are provided, the most common mechanism in graph
databases is the use of APIs. It means several advantages:
standard vocabulary (for functions and procedures), easy de-
velopment of applications, and an unlimited power for query-
ing data. However, it also brings serious problems: lower level
of abstraction (for the general user), programming language
restrictions, implementation-dependent efficiency, and decid-
ability problems.

An important feature, not included in Table I, is the support
to import and export data in different data formats. Although
there exists some data formats for encoding graphs (e.g,
GraphML and TGV) none of them has been selected as
the standard one. This issue is particularly relevant for data
exchange and sharing.

TABLE I
DATA STORING FEATURES

Graph Main External Backend Indexes
Database memory memory Storage

AllegroGraph • • •
DEX • • •

Filament • •
G-Store •

HyperGraphDB • • • •
InfiniteGraph • •

Neo4j • • •
Sones • •

vertexDB • •

TABLE II
OPERATION AND MANIPULATION FEATURES

Data Data Query API GUI
Graph Definition Manipulat. Language

Database Language Language
AllegroGraph • • • • •

DEX •
Filament •
G-Store • • •

HyperGraphDB •
InfiniteGraph •

Neo4j •
Sones • • • • •

vertexDB •

A. Graph data structures
The data structures refer to the types of entities or objects

that can be used to model data. In the case of graph databases,
the data structure is naturally defined around the notions of
graphs, nodes and edges (see Table III).

We consider four graph data structures: simple graphs,
hypergraphs, nested graphs and attributed graphs. The basic
structure is a simple flat graph defined as a set of nodes
(or vertices) connected by edges (i.e., a binary relation over
the set of nodes). An Hypergraph extends this notion by
allowing an edge to relate an arbitrary set of nodes (called
an hyperedge). A nested graph is a graph whose nodes can
be themselves graphs (called hypernodes). Attributed graphs
are graphs where nodes and edges can contain attributes for
describing their properties [32]. Additionally, over the above
types of graphs, we consider directed or undirected edges,
labeled or unlabeled nodes/edges, and attributed nodes/edges
(i.e., edges between edges are possible).

Note that most graph databases are based on simple graphs
or attributed graphs. Only two support hypergraphs and no
one nested graphs. We can remark that hypergraphs and
attributed graphs can be modeled by nested graphs. In contrast,
the multilevel nesting provided by nested graphs cannot be
modeled by any of the other structures [2].

In comparison with past graph database models, the in-
clusion of attributes for nodes and edges is a particular
feature in current proposals. The introduction of attributes is
oriented to improve the speed of retrieval for the data directly
related to a given node. This feature shows the influence of
implementation issues in the selection and definition of the
data structures (and consequently of the data model).

TABLE III
GRAPH DATA STRUCTURES

Graphs Nodes Edges
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AllegroGraph • • • •
DEX • • • • • •

Filament • • • •
G-Store • • • •

HyperGraphDB • • • •
InfiniteGraph • • • • • •

Neo4j • • • • • •
Sones • • • • • • •

vertexDB • • • •

The expressive power for data modeling can be analyzed by
comparing the support for representing entities, properties and
relations at both instance and schema levels. This evaluation
is shown in Table IV.

At the schema level we found that models support the defini-
tion of node, attribute and relation types. We also evaluate the
support for several nodes and relations at the instance level: an
object node, identified by an object-ID, represents an instance
of a node type; a value node represents an entity identified
by a primitive value (i.e., its name); a complex node can
represent an special complex entity, for example a tuple or a



set; an object relation, identified by a relation-ID, is an instance
of a relation type; a simple relation represents a node-edge-
node instance; a complex relation is a relation with special
semantics, for example grouping, derivation, and inheritance.

Value nodes and simple relations are supported by all the
models. The reason is that both conform the most basic and
simple model for representing graph data. The inclusion of
object-oriented concepts (e.g., IDs for objects) for representing
entities and relations reflects the use of APIs as the favorite
high-level interface for the database. Note that this issue is not
new in graph databases. In fact, it was naturally introduced by
the so called graph object-oriented data models [2].

Finally, the use of objects (for both nodes and relations)
is different of using values. For example, an object node
represents an entity identified by an object-ID, but it does
not represent the value-name of the entity. In this case, it is
necessary to introduce an explicit property or relation “name”
in order to specify the name of the entity. The same applies for
relations. This issue generates an unnatural form of modeling
graph data.

TABLE IV
REPRESENTATION OF ENTITIES AND RELATIONS

Schema Instance
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AllegroGraph • •
DEX • • • • • •

Filament • •
G-Store • •

HyperGraphDB • • • • •
InfiniteGraph • • • • • •

Neo4j • • • •
Sones • • •

vertexDB • •

B. Query languages

A query language is a collection of operators or inference
rules that can be applied to any valid instance of the database,
this with the objective of manipulating and querying data in
any combination desired [2]. As is shown in Table III, query
languages are not frequent in current graph databases. In fact,
there is not proposal for a standard one.

AllegroGraph supports SPARQL, the standard query lan-
guage for RDF. SPARQL is based on graph pattern matching
but is not oriented to querying the graph structure of RDF
data. Neo4j is developing Cypher, a query language for
property graphs. G-Store and Sones include SQL-based query
languages with special instructions for querying graphs. To the
best of our knowledge, there is not a formal definition of the
semantics for the above query languages, making a systematic
study of their complexity and expressive power difficult.

Data retrieval is the main objective in current graph
databases. AllegroGraph supports reasoning via its Prolog
implementation. Data analysis is supported in terms of special
functions (e.g., shortest path) for querying graph properties.

The lack of a standard query language is a disadvantage
of current graph databases. Recall that in mature databases
the operation of the database is performed via standard and
well-defined database languages. Instead, the focus in current
graph databases is to provide APIs for popular programming
languages. Hence, the selection is hardly determined by the
programmer skills or by application requirements.

TABLE V
COMPARISON OF QUERY FACILITIES (• INDICATES SUPPORT, AND ◦

PARTIAL SUPPORT)

Type Use
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AllegroGraph ◦ • • • • •
DEX • • •

Filament • •
G-Store • •

HyperGraphDB • •
InfiniteGraph • •

Neo4j ◦ • •
Sones • • • •

vertexDB • •

C. Integrity constraints

Integrity constraints are general statements and rules that
define the set of consistent database states, or changes of state,
or both [2]. Table VI shows that integrity constraints are poorly
studied in graph databases. In fact, there are not important
variations of the notions studied in the past.

We consider several integrity constraints: types checking,
to test the consistency of an instance with respect to the
definitions in the schema; node/edge identity, to verify that
an entity or relation can be identified by either a value (e.g.,
name or ID) or the values of its attributes (e.g., neighborhood
identification); referential integrity, to test that only existing
entities are referenced; cardinality checking, to verify unique-
ness of properties or relations; functional dependency, to test
that an element in the graph determines the value of another;
and graph pattern constraints, to verify an structural restriction
(e.g., path constraints).

The support for evolving schemas is a characteristic of graph
databases that is commonly used to justify the lack of integrity
constraints. We aim that is not a valid argument assuming that
data consistency in a database is equal or even more important
than a flexible schema. Moreover, an evolving schema can be
supported by allowing flexible structures in the schema (as in
semi-structure data models). For example, the definition of a



relation type as optional, enables the user to decide either the
inclusion or the absence of such relation for a given entity.

TABLE VI
COMPARISON OF INTEGRITY CONSTRAINTS
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DEX • • •
HyperGraphDB • •
InfiniteGraph • •

Sones • •

IV. CURRENT GRAPH DATABASES AND THEIR SUPPORT
FOR QUERYING GRAPHS

In the database literature we can found several works
studying problems related to storing and querying graphs [33],
[34]. Such problems play an important role for applications
that use graphs as their data model [4]. In this section, we
compare graph databases in terms of their facilities to solve
several queries which can be considered essential in graphs.
We grouped then in adjacency, reachability, pattern matching
and summarization queries.1

1) Adjacency queries: The primary notion in this type of
queries is node/edge adjacency. Two nodes are adjacent (or
neighbors) when there is and edge between them. Similarly,
two edges are adjacent when they share a common node.

Some typical queries in this group are: basic node/edge
adjacency, to test whether two nodes (edges) are adjacent [36];
and k-neighborhood of a node, to list all the neighbors of the
node [37]. Adjacency queries are useful in several contexts, for
example in molecular biology [38], information retrieval[39]
and the semantic Web [40].

2) Reachability queries: This type of queries is character-
ized by path or traversal problems. The problem of reachability
tests whether two given nodes are connected by a path.

In this context, we can consider two types of paths: fixed-
length paths, which contain a fixed number of nodes and
edges; and regular simple paths, which allow some node and
edge restrictions (e.g., regular expressions). A related but more
complicated problem is to find the shortest path, that is to
compute the quickest/shortest route between two nodes.

Reachability queries are studied and required in several
application domains. For example in database theory [41],
[42] (where recursive queries are in practice graph traversals),
spatial databases [43], biological databases [44], and the
semantic Web [45]. One of the challenges to incorporate reach-
ability queries into a query language is their computational

1A similar classification was proposed and used in a previous evaluation
of graph query languages [35].

complexity. For example, finding simple paths with desired
properties in direct graphs is an NP-complete problem [34].

3) Pattern matching queries: Graph pattern matching con-
sists in to find all sub-graphs of a data graph that are
isomorphic to a pattern graph. Particularly, it deals with two
problems: the graph isomorphism problem that has a unknown
computational complexity; and the sub-graph isomorphism
problem which is an NP-complete problem [33].

Pattern matching has attracted a great deal of attention
in database theory [33], [34], [46], [47], data mining [48],
bioinformatics [49], and semantic Web [50].

4) Summarization queries: This type of queries are not
related to consult the graph structure. Instead they are based
on special functions that allow to summarize or operate on
the query results, normally returning a single value. Aggregate
functions (e.g., average, Count, maximum, etc.) are included
in this group.

Additionally, we consider functions to compute some prop-
erties of a graph and its elements. For example: the order of
the graph (i.e., the number of vertices), the degree of a node
(i.e., the number of neighbors of the node), the minimum,
maximum and average degree in the graph, the length of a path
(i.e., the number of edges in the path), the distance between
nodes (i.e., the length of a shortest path between the nodes),
the diameter of the graph (i.e., the greatest distance between
any two nodes), etc.

In Table VII, we summarized the support that current graph
databases provide for answering the queries defined above.
Recall that most graph databases implements an API instead
of a query language. Hence, we evaluate whether an API
can answer an essential query by using a combination of
basic functions, more than the facilities to implement an
algorithm that solve the query (feature clearly supported by
a programming language).

Additionally, Table VIII presents the results of a previous
study [35] about (past) graph query languages and their sup-
port for querying essential graph queries. Such study provides
a positive conclusion about the feasibility of developing a well-
designed graph query language. It is important to note that
these languages were well-studied from a theoretical point
of view. Hence, they provide a formal background for the
definition of a standard query language for graph databases.

V. CONCLUSIONS

In this paper we surveyed current graph databases and
compare them according to their data modeling features. We
shown that most graph database models provide an innate
support for different graph structures, query facilities in the
form of APIs (most of the models) and query languages
(a few of them), and basic notions of integrity constraints.
Additionally, we defined a set of essential graph queries and
evaluated the query facilities provided by graph databases in
order to answer such queries.

The review shown that some aspects of current graph
database models deserve more development. In particular, the
definition of standard graph database languages (for defining,



TABLE VII
CURRENT GRAPH DATABASES AND THEIR SUPPORT FOR ESSENTIAL

GRAPH QUERIES
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Allegro • • •
DEX • • • • •

Filament • • •
G-Store • • • • •

HyperGraph • •
Infinite • • • • •
Neo4j • • • • •
Sones • •

vertexDB • • • •

TABLE VIII
PAST GRAPH QUERY LANGUAGES AND THEIR SUPPORT FOR ESSENTIAL

GRAPH QUERIES (• INDICATES SUPPORT, AND ◦ PARTIAL SUPPORT)
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GraphLog • • • • • •
Gram • • •

GraphDB ◦ • •
Lorel • • •
F-G ◦ • •

manipulating and querying the data) and notions of integrity
constraints (for preserving the consistency of the database).

As future work we plan to develop an empirical evaluation
of current graph databases; this oriented to make a quantita-
tive and qualitative analysis of their support for storing and
querying graph data.
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